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Fig. 1: Our policy utilizes extrinsic dexterity to continuously reposition and reorient diverse objects to successfully match the goal
functional grasp poses. The left side depicts the dexterous functional pre-grasp manipulation process, while the right side illustrates the
goal functional grasp pose that the agent needs to satisfy.

Abstract— Objects in the real world are often not naturally
positioned for functional grasping, which usually requires
repositioning and reorientation before they can be grasped,
a process known as pre-grasp manipulation. However, ef-
fective learning of universal dexterous functional pre-grasp
manipulation necessitates precise control over relative position,
relative orientation, and contact between the hand and object,
while generalizing to diverse dynamic scenarios with varying
objects and goal poses. We address the challenge by using
teacher-student learning. We propose a novel mutual reward
that incentivizes agents to jointly optimize three key criteria.
Furthermore, we introduce a pipeline that leverages a mixture-of-
experts strategy to learn diverse manipulation policies, followed
by a diffusion policy to capture complex action distributions
from these experts. Our method achieves a success rate of
72.6% across 30+ object categories encompassing 1400+ objects
and 10k+ goal poses. Notably, our method relies solely on
object pose information for universal dexterous functional pre-
grasp manipulation by using extrinsic dexterity and adjusting
from feedback. Additional experiments under noisy object pose
observation showcase the robustness of our method and its
potential for real-world applications. The demonstrations can
be viewed at https://unidexfpm.github.io.

I. INTRODUCTION

Objects in human daily life serve various functions, which
require different functional grasp poses. For instance, when
using a spray bottle, one typically positions fingers on the
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trigger, whereas when passing the bottle to another person,
one typically grasps the body. Current works [1], [2] mainly
focus on training models to predict the functional grasp pose
or further [3] incorporate with reinforcement learning (RL)
for grasp execution and post grasp usage. However, these
works assume objects are already in highly graspable poses,
overlooking the fact that objects are often not positioned with
high functional graspability in the real world. For instance,
a spray bottle might be lying flat on a table, making it
challenging to grasp directly for its intended use. Humans
typically manipulate the object into a pre-grasp pose through
continuous reorientation and repositioning-a process known
as pre-grasp manipulation [4], [5]. Unlike conventional pre-
grasp manipulation, which aims to transition objects from
ungraspable to graspable states, dexterous functional pre-
grasp manipulation further requires both the dexterous hand
and the object to satisfy a specific goal pose for subsequent
functional grasping.

Dexterous functional pre-grasp manipulation of diverse
objects involves intricate interactions with objects and environ-
ments, demanding closed-loop dexterous manipulation skills.
Existing methods [6], [7], [8] rely on reinforcement learning
to train policies for general dexterous manipulation, typically
focusing on satisfying the goal orientation and/or position of
the objects. However, for functional use, goals must precisely
align with the relative position, orientation, and contact
between the dexterous hand and the object. This results in
an exceedingly small solution space, making it challenging
for RL agents to explore successful policies. Conventional
approaches, such as adding distance rewards [7], [9], [10],
struggle in this scenario. Simply adding multiple distance
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rewards often leads RL agents to become trapped in local
minima, failing to devise manipulation policies that meet all
criteria. It is also impossible for us to design specific rewards
according to each object [11], since we need to generalize
to diverse objects with diverse poses. Such generalization is
also challenging for RL agents to learn from scratch [12],
[13], [14].

To tackle the problem, we propose a novel mutual reward
that computes a scale according to the distance of each
criterion and uses the lowest scale to restrict all the distance
rewards to prevent the agent from quickly learning to
minimize one of the distance rewards, thus prevent the
agent to stuck at the local minimum. Moreover, to facilitate
generalization across diverse objects and functional grasp
poses, we employ the teacher-student learning framework [7],
[14] by training a mixture of experts. Mixture of experts will
generate diverse manipulation behavior, leading to a complex
action distribution, especially for a high degree of freedom
(DOF) dexterous hand. Thus, we propose to use diffusion
policy [15] which has been shown to have great generative
modeling ability to capture such complex action distribution.

Through mutual reward and a mixture of experts training,
we observe significant improvements in teacher policy learn-
ing. When distilling the teacher policy into a single student
policy using diffusion policy, our approach achieves teacher-
level performance even without object geometry. Our learned
policy demonstrates adept use of extrinsic dexterity, such as
leveraging tables and inertia to manipulate objects effectively,
and also learns to adjust from feedback. These capabilities
enhance the policy to generalize across diverse objects.

In summary, our contributions are listed as follows:(1) We
propose a novel mutual reward to improve the local minimum
problem which greatly improves the teacher policy learning.
(2) We propose a pipeline integrating a mixture of experts and
diffusion policy for learning complex and general dexterous
manipulation policy. (3) To the best of our knowledge, we
have achieved the first general dexterous functional pre-grasp
manipulation policy of 72.6% success rate across 30+ object
categories encompassing 1400+ objects and 10k+ goal poses.

II. RELATED WORK
A. Dexterous Functional Grasping

Functional grasping stands as a crucial skill for humans,
given the varied functionalities objects possess in real-world
scenarios. Leveraging human-labeled part-level functional
information, recent frameworks [16], [2] have been proposed
for synthesizing functional grasp poses. Additionally, a high-
quality functional grasping dataset [1] has been introduced,
incorporating diverse dexterous hands. However, these efforts
primarily focus on pose generation, overlooking the execution
of grasps.

Utilizing the human functional grasping dataset [17], an
affordance prediction model has been developed for functional
region estimation, subsequently employed in RL training for
functional grasping [18], [19]. To enable in-the-wild real-
world functional grasping, a framework [3] using internet
data for predicting functional affordance region, integrated

with simulation training for real-world functional grasping.
Nonetheless, these works often assume objects are already
positioned in a highly graspable pose for functional grasping,
thus bypassing the need for complex pre-grasp manipulation.

Our work instead focuses on dexterous functional pre-grasp
manipulation, which is the complement of these existing
works. Our work can serve as a foundational step towards
integrating these approaches to achieve functional grasping
in real-world scenarios.

B. Dexterous Manipulation

Dexterous manipulation requires closed-loop policies to
handle complex and discontinuous contacts, which is challeng-
ing to model accurately. Model-free reinforcement learning,
which does not require explicit modeling of such contacts,
has been widely adopted for learning dexterous manipulation
skills [20], [21], [22], [7], [23], [24]. This approach has
also demonstrated the capability to generalize across diverse
objects, either using poincloud [22], [8] or object pose
information [7], [6]. However, existing tasks often focus on
satisfying the goal orientation and/or position of the objects. In
contrast, dexterous functional pre-grasp manipulation involves
achieving precise position, orientation, and contact goals,
resulting in an exceedingly narrow solution space for RL
agents to explore successful policies. This challenge is further
exacerbated when attempting to generalize across different
objects.

C. Pre-grasp Manipulation

Pre-grasp manipulation has been widely investigated for
improving the graspability, primarily focusing on leveraging
extrinsic dexterity, such as utilizing tables or secondary arms,
to transform ungraspable objects into graspable ones using
either parallel grippers [4], [25], [26] or dexterous hands [27],
[5]. Additionally, apart from manipulating target objects,
obstacles can also be adjusted to improve graspability [28].
However, these studies did not consider the functionality
of the graspable states or goal states. Matching position,
orientation, and finger-level contact poses greater challenges
for pre-grasp manipulation.

D. Diffusion Model

The diffusion model has demonstrated strong generative
modeling capabilities in high dimensional space across various
domains [29], [30], [31], [32]. While previous works [33],
[34], [35] have primarily employed diffusion models for
generating dexterous hand grasp poses, the application of
diffusion policy for closed-loop manipulation policy learning
has been explored more recently [15]. Specifically, diffusion
policy has been proposed for parallel grippers to acquire
dexterous manipulation skills within specific tasks [15] or
with limited object instances [36]. However, our focus in-
volves employing a high-degree-of-freedom (DOF) dexterous
hand, which possesses a larger action space and requires
generalization across a wide range of object categories and
instances. Additionally, we leverage diffusion policy for multi-
experts teacher-student learning.



III. DEXTEROUS FUNCTIONAL PRE-GRASP
MANIPULATION

We focus on the problem of dexterous functional pre-grasp
manipulation. Given a goal functional grasp configuration, a
policy needs to control a robotic arm and dexterous hand to
manipulate the object and achieve the specified goal pose.

State and Action Spaces: In this task, we consider a
tabletop manipulation scenario involving a 6-DOF robotic
arm Ja ∈ R6 and 24-DOF dexterous hand Jh ∈ R24. The
hand’s base pose is defined as b = [bp,bq], where bp ∈ R3

denotes the 3-D position and bq ∈ R4 represents the 4-D
quaternion. The 24-DOF joints of the hands consist of 2-DOF
wrist joints Jw ∈ R2, 18-DOF finger joints Jf ∈ R18, and
4-DoF under-actuated joints of the fingers Ju ∈ R4. The
action space A ⊆ R26 encompasses 6-D relative changes for
the hand base ab and 20-D relative changes for the actuated
hand joints ah.

Task Simulation: For each pre-grasp manipulation trail,
we sample a desired goal pose g ∼ pg(g) from a prior goal
distribution. Each goal pose g corresponds to a specific object
O. However, one object can have multiple potential goal poses
g. The goal pose g, is represented as a combination of three
elements:(1) Relative Position: gP

pos ∈ R3, representing the
relative 3D position of the object’s center of mass with respect
to the hand’s palm. (2) Relative Orientation: gP

ori ∈ R4,
representing the relative 4D quaternion of the object’s center
of mass with respect to the hand’s palm. (3) Goal Contact:
gfj ∈ R18, representing the desired final configuration of the
hand’s actuated finger joints upon achieving the grasp.

Observations: This task requires the agent to adapt to
different goal poses g and different objects O. Consequently,
the policy π(a|·) needs to condition on arm joint Ja, hand
base b, hand joints Jh, goal pose g and object pose oP (with
respect to hand palm). The 6-D object pose oP is represented
as oP = [oPp , o

P
q ], where oPp ∈ R3 denotes the 3-D position

of the object’s center of mass with respect to the hand’s palm.
oPq ∈ R4 represents the 4-D quaternion of the object’s center
of mass with respect to the hand’s palm.

Objective: The objective of this task is to find a policy
π(a|b,Ja,Jh, oP ,g) that maximizes the expected pre-grasp
manipulation success rate:

π∗ = argmax
π

Eat∼π(·|bt,Ja
t ,J

h
t ,o

P
t ,g) [1(success)] (1)

The manipulation is successful if ϕp <= ϵpos and ϕθ <=
ϵori and ϕj <= ϵfj . Where the ϕp represents the distance
between object position oPp and goal position gP

pos:

ϕp
(
oP ,gP

pos

)
= ∥oP − gP

pos∥2 (2)

ϕθ represents the distance between object orientation oPq and
goal orientation gP

ori:

ϕθ
(
oPq ,g

P
ori

)
= 2arcsin

((
oPq · (gP

ori)
−1

)
4

)
(3)

ϕj represents the distance between finger joint Jf and goal
joint gfj :

ϕj
(
Jf ,gfj

)
= ∥Jf − gfj∥2 (4)
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Fig. 2: The UnidexFPM Pipeline. a) Employing autoencoder to
learn latent representations base on object-hand point cloud. b)
Utilizing K-Means to cluster the entire training set into N clusters
based on the learned representations. c) Learning an expert for each
cluster based on mutual reward. d) Distilling multi-expert knowledge
into a single student using diffusion policy for general dexterous
functional pre-grasp manipulation of both seen and unseen objects.

ϵpos, ϵori, and ϵfj represent the desired distance threshold
for position, orientation, and contact respectively.

IV. METHOD

In dexterous functional pre-grasp manipulation, the high
dimensionality of the dexterous hand results in a vast policy
space. However, the task itself encompasses an exceedingly
limited solution space, as successful pre-grasp manipulation
requires achieving precise goals that simultaneously fulfill
position, orientation, and contact requirements.

Despite the successful application of model-free RL in
various manipulation tasks [6], [7], the stringent requirements
in pre-grasp manipulation pose significant challenges to
exploration, especially for agents with limited observations.

To tackle these challenges, we employ the teacher-student
framework [7], as shown in Figure 2. This framework utilizes
a pre-trained "teacher" agent with superior knowledge to
guide a "student" agent during the learning process.

A. Teacher Policy Learning

Teacher policy learning aims to get high-performance ex-
perts without constraining access to privileged information [7].
We introduce a novel mutual reward to enable the learning of
dexterous functional pre-grasp manipulation policies, followed
by the utilization of a mixture of experts to enhance the overall
performance of the teacher policy.

1) Mutual Reward: Reward shaping is a crucial aspect
of training a proficient RL agent. In our task, even when
provided with privileged information, conventional reward
shaping approaches, such as adding distance rewards for
each goal component [7], [9], [10], can readily cause the RL
agent to become trapped at a local minimum, as shown in
Figure 3a). This type of reward incentivizes the RL agent to
prioritize optimizing distance rewards that are easy to achieve,
such as position distance ϕp and contact distance ϕj , which
can be easily adjusted by manipulating the hand base and
hand joint. However, the RL agent tends to disregard the
orientation distance ϕθ, which requires reorienting the object
to minimize.



a) b)

Fig. 3: Compasion of Rewards. To compare different rewards, we
select position and orientation distance, setting wp = wθ = 1 for
simplicity. We visualize the trend of reward with the changing of ϕ

ϵ
.

a) Sum reward: Optimizing towards either distance reward leads to
an increase in the total reward. b) Mutual reward: The total reward
increases only when all distance rewards are jointly optimized.

To tackle the problem, we propose a novel mutual reward.
More specially, we first define a normalization function ψ,
to standardize different distance rewards into range [0,1]:

r̃ = ψ (ϕ, ϵ) =
ϵ

ϕ+ ϵ
(5)

Where r̃ represents the normalized distance reward. Given
the challenge of defining the optimization order for three
distance rewards, we use the minimum normalized distance
reward as a scale to regulate all the distance rewards. Thus,
the total distance reward becomes:

rdist = r̃min (wpr̃p + wθ r̃θ + wj r̃j) (6)

Here, wp, wθ, and wj are hyperparameters. By incorporating
this restriction term, simply minimizing the position distance
ϕp or contact distance ϕj will not lead to a rapid increase
in the total distance reward, as the orientation distance ϕθ is
typically large, resulting in a small value for r̃min, as illustrated
in Figure 3 b). This reward mechanism compels the RL agent
to jointly optimize all three distance rewards. This enables
the RL agent to successfully learn the dexterous functional
pre-grasp manipulation policy.

In addition to the mutual reward, we incorporate an action
penalty, denoted as rap, to regulate arm motion:

rap = ∥ab∥2 (7)

This penalty aims to discourage excessive arm motion and
encourage the agent to utilize fingers for object manipulation.
The success reward, rsucc, is assigned a value of 1 if
the manipulation is successful. Therefore, the total reward
becomes:

r = rdist + wap ∗ rap + wsucc ∗ rsucc (8)

Where wap represents the hyperparameter for the action
penalty, and wsucc represents the hyperparameter for the
success reward.

2) Mixture of Experts: Given the need for our task to gen-
eralize across diverse objects and goal poses, the manipulation
process can exhibit considerable diversity. Consequently, it
is challenging for RL agents to learn a good policy for all
goals. While Unidexgrasp [13], [14] introduced a framework

for learning dexterous grasping for diverse objects by starting
with "GeoCurriculum", which gradually increases the object
instances and categories from a single object with a single
pose. However, such a curriculum is not suitable for our
task. Unlike grasping, which involves reaching and closing
fingers, manipulation requires continuous repositioning and
reorienting of the object. Hence, the manipulation policy
for different object geometry can be different. For instance,
manipulating a cylindrical bottle involves rolling it, whereas
manipulating a camera requires different techniques. Thus,
if the agent learns to manipulate a cylindrical bottle first, it
may struggle to learn to manipulate the camera.

Although "GeoCurriculum" is not directly applicable to our
task, the concept of decomposing the task space is valuable.
Therefore, we initially cluster the entire task space into several
clusters. Unidexgrasp++ [13] train an autoencoder on object
geometry for the reconstruction task and then use the latent
representation of each object for state-based clustering. In the
case of pre-grasp manipulation, the task is linked to the goal
pose. Given the same object with the same initial pose, the
goal of grasping the handle versus grasping the body can lead
to different manipulation processes. Thus, we combine the
object and hand point cloud to learn a latent representation.

After clustering, we employ K-Means to partition the entire
task space into N clusters. While prior work [14] suggests
that a generalist can assist specialists in training dexterous
grasping, in dexterous functional pre-grasp manipulation,
manipulation behaviors can vary across different goals,
such as manipulating a cylindrical bottle versus a camera,
as described earlier. Hence, to obtain a specialized high-
performance manipulation policy for each cluster, we directly
train an expert for each cluster from scratch.

B. Distilling With Diffusion Policy

Once we have acquired the mixture of experts, our objective
is to distill the diverse manipulation policies into a single
student policy. The student policy is constrained to only
access observations available in real scenarios, as described
in Section III. Given the complexity and diversity of the
action distribution resulting from the intricate manipulation
process and the mixture of experts, coupled with the high
dimensionality of the dexterous hand, we opt to utilize
a diffusion policy [15] to model the action distribution
of different experts. Diffusion policy formulates the robot
behavior generation as a conditional denoising process.

Dataset Generation: Since the diffusion policy operates
as an offline imitation learning framework, we must gather
demonstrations using our teacher experts. While our teacher
policy necessitates privileged information for inference, the
trajectories we gather for training the diffusion policy solely
comprise limited observations. By executing the policy of our
N teacher experts on the entire task space, we sample a set of
trajectories {τi}Mi=1. However, these trajectories have different
episode lengths. Following [15], for each trajectory τi with
a stepsize of Li, we sample every sequence with length of
Tp, where Tp denotes the prediction horizon. Consequently,
we obtain Li − Tp + 1 trajectory data points from τi. By



iterating over the trajectory set {τi}Mi=1, we can generate the
dataset {Sj}Oj=1 for diffusion policy training.

Diffusion Policy Training: The training process involves
sampling data points from the generated dataset. For each
sample Sj , we randomly sample a time step t, and then
sample a noise nt. We consider the first To steps of
observations from Sj as the observation sequence oDj , and
take the Tp steps of actions from Sj as the action sequence
A0

j . We utilize oD as a condition and define the loss function
as follows:

L = MSE(nt,nθ(o
D
j ,A

0
j + nt, t)) (9)

Where nθ is a noise prediction network.
Action Generation with Diffusion Policy: Upon training

the noise prediction network nθ, for each simulation step
si, the DDPM [37] performs t steps denoising from the
noise action sequence At

si sampled from Gaussian noise,
until obtaining the noise-free action sequence A0

si . Following
equation:

At−1
si = α(At

si − γnθ(o
D
si ,A

t
si , t) +N (0, σ2I)) (10)

We then execute Ta steps of the denoised action sequence
A0

si .

C. Implementation Details:

Teacher Policy: Our RL backbone is PPO [38], we
configure hyperparameters with wp = wθ = wj = 3,
wap = −0.01 and wsucc = 800. Privileged information
details for teacher policy training are provided in Table I.

Variable Dimension Description Variable Dimension Description

bp (3,) hand base positions bq (4,) hand base orientations
Ja (6,) arm joint angles J̇a (6,) arm joint velocities
Jh (24,) hand joint angle J̇h (24,) hand joint velocities
fp

P (5, 3) fingertip positions (to Palm) fq
P (5, 4) fingertip orientations (to Palm)

vf (5, 3) fingertip linear velocities wf (5, 3) fingertip angular velocities

op (3,) object position oq (4,) object orientation
oPp (3,) object position (to Palm) oPq (4,) object orientation (to Palm)
vo (3,) object linear velocity wo (3,) object angular velocity

bboxobject (2, 3) object boundingbox

gP
pos (3,) target object position (to Palm) ϕp (3,) position distance

gP
ori (4,) target object orientation (to Palm) ϕθ (4,) orientation distance
gfj (18,) target hand joint angles ϕj (18,) joint distance

TABLE I: Teacher Observation. The superscript P represents the
variable is with respect to the hand-palm coordinate.

Mixture of Experts: For each goal pose gk in the set
{gk}Ok=1, we sample 1024 points from the corresponding
object mesh and hand mesh. These point clouds are encoded
using PointNet++ [39], and the reconstruction loss is com-
puted with Chamfer Distance. The entire task space is divided
into 20 clusters.

Diffusion Policy: We configure Tp = 4, To = 2, and
Ta = 1. Because we use the relative action for policy learning,
we use the transformer backbone [40] for handling quick and
sharp changes in action sequence [15].

V. EXPERIMENT SETUPS

A. Task Simulation

Environment setup: We created a simulation environment
based on Isaac Gym [41] using ShadowHand and UR10e
robots. Each environment consists of an object randomly
placed on a table, the object’s mass is randomized from

0.01kg to 0.5kg due to the diversity of object categories we
have. A UR10e robot is positioned outside the table with
the ShadowHand mounted on the end of the arm, as shown
in Figure 1. The max episode length is 300 steps. Episodes
terminate if reach the goal pose, or prematurely if the object
falls off the table or the maximum steps are reached.

Goal pose generation: Currently, there exists no publicly
available functional grasp pose dataset. We utilize the Oakink
dataset [42], which covers diverse functional intents for a
wide range of objects. However, since this dataset is based on
human hand, it differs in structural and shape characteristics
from robotic hands. To adapt the hand poses, we employ
a retargeting algorithm [22] based on task space vectors to
map the mano hand pose to the ShadowHand pose. Next, to
refine poses prone to collision and non-force closure grasp,
we utilize Dexgraspnet [43] for optimization. Finally, all
refined poses undergo validation in a simulated environment
to eliminate those unstable under the influence of gravity.

Due to the uneven distribution of object instances within
each category in the Oakink dataset, we implement a stratified
splitting approach for training and testing sets. Overall, our
training set comprises 1026 object instances with a total of
6968 goal poses, while the testing set consists of 443 object
instances with a total of 3034 goal poses.

B. Baselines and Metrics

For teacher policy, we compare our method with the
following methods: 1) PPO-Sum: In this baseline, we adopt
a sum reward approach, combining three distance rewards
for RL training, while keeping other rewards the same as
Ours. Based on our proposed reward, we further conduct
experiments on 2) Ours-SE: Here, we only train a single
expert for the entire training set. 3) Ours-MoEF: In this
comparison, we utilize a mixture of experts. However, rather
than training them from scratch, we fine-tune them from
the Ours-SE. Due to computational cost, this comparison is
conducted on a subset of our training data.

For comparison based on student observations, we evaluate
our method with 1) PPO-OS: This baseline employs PPO [38]
as a one-stage method. It uses the same mutual reward as
Ours but without teacher-student learning.

2) BC: Behavior Cloning servers as an offline imitation
learning framework, learning directly from expert demonstra-
tions via supervised learning. This baseline employs the same
settings and teacher policy as Ours. 3) Dagger: Dagger [44]
is an online imitation learning framework, that tackles the
covariate shift problem through iterative sampling with a
learned policy via online interaction.

We employ success rate as the metric for all comparisons.
Our task employs stringent criteria, setting ϵpos = 1cm,
ϵori = 0.1rad, and ϵfj = 0.2rad, which are challenging
thresholds to meet.

VI. RESULTS

A. Teacher Policy Comparison

As depicted in Table II, when lacking mutual reward, the
RL agent fails to explore a successful manipulation policy.



Method Training set Reward Teacher Succ (Train)
PPO-Sum All Sum SE 0.0%
Ours-SE All Mutual SE 58.0%
Ours-SE (sub) Sub Mutual SE 55.2%
Ours-MoEF (sub) Sub Mutual MoE 63.9%
Ours (sub) Sub Mutual MoE 67.4%
Ours All Mutual MoE 75.0%

TABLE II: Success Rate of Teacher Policy. "All": trained on
the entire training set; "Sub": trained on a subset of the training
set; "SE": single expert; "MoE": mixture of experts; "Succ (Train)":
success rate on the training set.

By observing the learning policy, we found the agent rapidly
learns to align positions and contacts. However, the agent is
stuck at this local minima and fails to align orientations.
In contrast, our mutual reward prevents the agent from
prematurely optimizing towards part of distance rewards.
Instead, it encourages the agent to simultaneously optimize
each distance reward, leading to a significant improvement
in success rate from 0.0% to 58.0%.

Compared to a single expert, utilizing multiple experts
improves the success rate from 58.0% to 75.0%. Additionally,
we conducted an experiment to show that training from scratch
is better than fine-tuning from a generalist. We sampled
five clusters with varying learning difficulty from the entire
training set due to computational cost. "Ours (sub)" was
trained from scratch on each cluster, while "Ours-MoEF (sub)"
was fine-tuned from the pre-trained single expert "Ours-SE
(sub)". As shown in Table II, training from scratch performs
better overall. This is due to the diversity of objects and poses
in our dataset and the complexity of manipulation, making it
challenging to transfer a general policy to objects and poses
with significant variability.

B. Student observation based Comparsion

Method Teacher Succ (Train) Succ (Test)
PPO-OS - 6.5% 6.1%
Dagger SE 52.2% 52.3%
Dagger MoE 17.5% 17.3%
Ours MoE 73.7% 70.1%

TABLE III: Success Rate of Student Observation-Based Policy.
In here, we present the results of the methods without requiring
demonstrations for training. "SE": single expert; "MoE": mixture
of experts; "Succ (Train)": success rate on the training set; "Succ
(Test)": success rate on the testing set.

As indicated in Table III, the PPO-OS baseline, which
undergoes end-to-end training, exhibits a very low success rate
even after interacting with the environment for 5.76 billion
steps. Regarding Dagger, while it can achieve performance
comparable to the single-expert policy, we observed it
struggles to learn an effective policy under the mixture
of experts. We suspect this challenge arises from the high
diversity and complexity of the expert policies, leading to
continuous changes in the action distribution. Consequently,
the agent struggles to learn a robust policy in such a non-
stationary scenario.

Compared to methods requiring interaction with the en-
vironment, offline imitation learning methods demonstrate
superior results. Due to the critical role of data quantity in
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Fig. 4: Success Rate of Ours and BC under different demon-
stration numbers. "Succ": success rate; "Demo Num / Pose": the
number of demonstrations collected for each pose in the training
set, used for distilling the student policy.

imitation learning, we conduct comparisons between Ours
and BC across various demonstration numbers. As shown
in Figure 4, Ours is consistently better than BC on both
the training and testing sets and outperforms BC when have
limited demonstration numbers. Notably, using only half the
number of demonstrations required by BC, Ours can still
achieve comparable performance. With a large number of
demonstrations, Ours can approach teacher-level performance.

C. Difficulity of general dexterous functional pre-grasp ma-
nipulation
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Fig. 5: Success Rate of One-stage PPO under Different Sizes
of Training Set. "Succ (Train)": success rate on the training set.
As the number of objects increases, finding a general manipulation
policy across diverse objects becomes increasingly challenging for
one-stage PPO.

To demonstrate the difficulty of learning general dexterous
functional pre-grasp manipulation, we conducted experiments
using one-stage PPO, incorporating our mutual reward. We
trained PPO across varying numbers of objects, for each PPO
model, we trained until convergence or until the maximum
interaction steps (5.76 billion) was reached.

As depicted in Figure 5, when trained on a single object, the
RL agent rapidly learns a policy with a nearly 100% success
rate. However, as the number of objects increases, the success
rate declines steeply, highlighting the difficulty of general
dexterous functional pre-grasp manipulation. Interestingly,
the success rate for 9 objects is lower than for 100 objects.
This is because within the set of 9 objects, the presence
of challenging objects, such as knives, is proportionately
higher, hindering exploration. This underscores the necessity
of employing a mixture of experts.



D. Ablation on geometry type

Geometry Type Succ (Train) Succ (Test)
Pose + Point Cloud 66.5% 63.3%

Pose + Bounding Box 65.9% 62.8%
Pose 65.7% 63.3%

TABLE IV: Success Rate of Different Geometries. "Succ (Train)":
success rate on the training set; "Succ (Test)": success rate on the
testing set. Due to computational cost, we conduct this experiment
using 5 demonstrations per pose.

From a common sense perspective, having information
about an object’s geometry is crucial for manipulating various
objects. However, as shown in Table IV, while providing
more detailed geometry information can lead to a better
student policy, it does not significantly affect performance. By
observing the learned policy, we discovered that our policy
utilizes extrinsic dexterity, such as using the table to roll
objects or leveraging inertia to aid in manipulating objects,
as shown in Figure 1. Moreover, our policy learns to adjust
based on feedback, as depicted in Figure 6. These capabilities
enhance the agent’s ability to generalize to different objects
and goal poses.

Fig. 6: Adjustment of Our Learned Policy. Although our policy
failed to pull up the pan initially, it adjusted by lowering the arm
on the second attempt, successfully pulling up the pan.

However, these capabilities also have drawbacks. We
observed examples where the agent pushes objects down to
better utilize extrinsic dexterity, which may need improvement
in the future through the design of new reward mechanisms.

E. Robustness under noisy object pose observation

1 ϵ 1.5 ϵ 2 ϵ
0◦, 0cm 70.1% 77.8% 81.2%
2◦, 2cm 38.1% 67.7% 75.2%
5◦, 5cm 0.0% 6.5% 8.71%

TABLE V: Success Rate under
Different Levels of Object Pose
Estimation Noise and Success
Threshold. The Gaussian noise is
determined by the standard devia-
tion of the specified threshold and
added separately to observations of
wrist position and orientation. Any
noise exceeding these bounds will
be clipped.

2𝜖

GT

1.5𝜖

1𝜖

Fig. 7: Visualization of
Achieved Functional Pose
under Different Success
Thresholds. Even when the
threshold is doubled, the
achieved functional pose re-
mains meaningful and com-
parable to the GT pose.

As we solely depend on object pose for dexterous functional
pre-grasp manipulation, and object pose is actually hard
to be accurate in the real world due to sensor noise and
occlusion. We further conduct experiment under varying levels
of noisy object pose observations [45]. As depicted in Table V,

injecting 2◦, 2cm noise results in a decrease in success rate.
However, given our stringent criteria, we also tested with a
larger success threshold, which is also a reasonable threshold,
as shown in Figure 7. By slightly adjusting the threshold,
we found that our method can still achieve a high success
rate. This underscores the robustness of our approach and
the potential for real-world applications.

F. Performance under different object categories
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Fig. 8: Success Rate of Different Object Categories.

As depicted in Figure 8, While our method achieves a high
success rate across the entire dataset, it still struggles with
irregularly shaped objects, particularly thin and slender ones
like knives and pens. Even when trained from scratch, the
experts fail to perform well on these objects, indicating a
need for specific design .

VII. CONCLUSIONS

In this work, we focus on general dexterous functional pre-
grasp manipulation. This entails repositioning and reorienting
various objects to precisely match diverse functional grasp
poses, crucial for real-world functional grasping. We adopt
a teacher-student learning framework, introducing a novel
mutual reward to prevent the RL agent from getting stuck
in local minima, greatly enhancing teacher policy learning.
Furthermore, we propose employing a mixture of experts
and distillation with a diffusion policy to facilitate learning
diverse and complex manipulation behavior. Our experiments
showcase the effectiveness and robustness of our approach,
revealing its potential for real-world applications.

Limitations and Future works. Although our teacher
policy shows promising results, it still struggles with objects
of irregular shapes. Integrating human demonstrations could
potentially improve the performance. Additionally, our cur-
rent focus is solely on pre-grasp manipulation. To achieve
functional grasping in real-world scenarios, it is essential to
integrate pre-grasp manipulation with functional grasp pose
generation and grasping, alongside addressing sim2real gap.

Acknowledgments: We thank Jiyao Zhang (PKU), Haoran
Geng (PKU), Zeyuan Chen (PKU), Tianyu Wang (PKU) for
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